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Abstract—Regioselective anodic �-monofluorination of oxazolidines 1 derived from �-amino acid was successfully carried out.
This is the first example of the successful, direct �-fluorination of protected amino acids. Anodic fluorination of methyl N-acetyl
pyroglutamate also provided the corresponding �-fluorinated product in moderate yield, while the anodic fluorination of an
open-chain �-amino acid, N-(carboethoxy)methylphathalimide, was unsuccessful. © 2002 Elsevier Science Ltd. All rights reserved.

It is well known that the introduction of fluorine
atom(s) into organic molecules sometimes enhances or
greatly changes their biological activities. There have
been many reports on the preparation of fluorine-con-
taining amino acids.2 However, few studies have been
reported on the preparation of �-fluoro-�-amino acid
derivatives,3 although unique biological properties are
expected for �-fluoro-�-amino acids.4 To our best
knowledge, there have been no reports on direct �-
fluorination of either protected or unprotected �-amino
acids so far. Several examples of partial anodic �-fluori-
nation of organonitrogen compounds such as lactams
were reported; however, silyl5a and sulfenyl5b leaving
groups on their �-position or two carbonyl groups on
the same nitrogen atom (N-acyl lactams) are neces-
sary.6 It was reported that the yields of anodic fluorina-
tion of N-methyl lactams were quite low.7

In this paper, we report successful anodic fluorination
of 1,3-oxazolidines 1 derived from L-serine and L-
threonine to give �-fluorinated products in good yields
(Scheme 1). This is the first example of direct partial
�-fluorination of �-amino acid derivatives.

Anodic fluorination of 1 was carried out under various
conditions as shown in Table 1. 8 The fluorination was
successfully carried out without any mediator, although

anodic methoxylation at the �-position of protected
�-amino acids requires a halide ion mediator (Cl−, Br−,
I−).9 Although dimethoxyethane (DME) has recently
been shown to be an effective solvent for anodic fluori-
nation of various heterocycles,10 the use of DME did
not give any fluorinated products, and a large amount
of 1a was recovered (run 1). This is mainly due to the
predominant anodic oxidation of DME owing to the
much higher oxidation potential of 1 compared with
that of DME.

On the other hand, acetonitrile (MeCN) was found to
be effective for the fluorination of 1a regardless of
supporting fluoride salts, and the corresponding 4-
fluorinated product 2a11 was obtained in moderate yield
of 66% (run 2). Anodic fluorination in nitromethane
required the least amount of electricity to complete the
electrolysis; however, the yield was much lower than
that obtained in MeCN (run 4). A graphite anode as
well as a platinum anode was also effective for the
fluorination of 1a (run 3). 1,3-Oxazolidine 1b was also

Scheme 1.
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Table 1. Anodic fluorination of 1,3-oxazolidines 1

Solvent Anode material ElectrolyteSubstrate Electricity (F/mol)Run Yield (%)a

DME Pt Et4NF·4HF1a 41 0b

1a2 MeCN Pt Et4NF·4HF 3 66 (56)
MeCN3 Graphite1a Et4NF·4HF 4 64
MeNO2 Pt Et4NF·4HF1a 2.54 42

1a5 MeCN Pt Et3N·3HF 4 56
1a6 MeCN Pt Et4NF·4HF 3 62

MeCN Pt Et4NF·4HF1b 37 (73, 81% de)
MeCN Graphite8 Et4NF·4HF1b 4 (66, 76% de)
MeCN Pt Et4NF·4HF1b 59c (32, 76% de)

a Determined by 19F NMR. The figures in parentheses are isolated yields.
b Starting material was not consumed.
c Electrolysis was carried out at −22°C.

fluorinated similarly at a platinum anode in
Et4NF·4HF/MeCN to provide 2b12 in good yield with
high diastereoselectivity (run 7). Even when the anodic
fluorination of 1b was conducted at low temperature,
−22°C, the diastereoselectivity of 2b did not increase
and the yield decreased drastically (run 9). It was
reported that anodically oxidative decarboxylation in
methanol of chiral oxazolidine-4-carboxylates gave
optically active methoxylated products and its optical
purity strongly depended on anode materials.13 How-
ever, as shown in Table 1 (runs 7 and 8), anode
materials did not affect the stereoselectivity
significantly.

The stereochemistry of the major diastereomer of 2b
was determined by long-range coupling between the
fluorine atom and methyl protons in the 1H NMR. The
stereoselectivity was explained as follows. The car-
bomethoxy group on the cationic carbon atom would
be fixed to be at the opposite side of the adjacent
methyl group due to their steric repulsion. Therefore, a
fluoride ion should attack 1b+ from the less hindered re
face as shown in Fig. 1.

In sharp contrast, anodic fluorination of 3-benzoyl-4-
carbomethoxy-1,1-dioxothiazolidine 3, an analogue of
1, did not proceed at all (Scheme 2). Next, we carried
out anodic fluorination of cyclic amino acids such as
N-benzoylproline methylester and methyl N-acetylpy-
roglutamate 4. Although the proline derivative did not
undergo fluorination, 4 gave the �-fluorinated product
514 in low yield under the same conditions. Recently,
Yoneda et al. reported that pulse electrolysis in
Et3N·5HF/MeCN at low temperature below 0°C was
suitable for efficient anodic �-fluorination of N-
acyllactams.6 We also attempted the anodic fluorination
of 4 by alternating the polarity of the electrodes every 5
s at 0°C, and the yield increased significantly to ca. 60%
(Scheme 3). In contrast, fluorination of N-(car-
boethoxy)methylphthalimide 6, which can be consid-
ered to be an open-chain analogue of 4, did not proceed
at all (Scheme 4).

The oxidation potentials (decomposting potentials) of
the starting compounds measured by linear sweep
voltammetry (LSV) are shown in Table 2. The sulfone

Figure 1.

Scheme 3.Scheme 2.
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Scheme 4.

Scheme 5.

Table 2. Oxidation potentials (decomposition potential) of
amino acid derivativesa

Ed
ox (V versus SCE)Substrate

1a 2.3
2.31b
2.43
2.84
2.76

a Determined by LSV with scanning rate 50 mV/s using a Pt anode in
0.1 M Bu4NBF4/MeCN containing a substrate (20 mM).
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In summary, we have illustrated the first example of
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